Evolutionary algorithm for the prediction and optimization of SiCp/Al metal matrix composite machining

Authors

  • Rashid Ali Laghari School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 15000, China
  • Munish Kumar Gupta Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, PR China
  • Jianguang Li School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 15000, China

Keywords:

Particle swarm optimization, Metal matrix composite, Turning, Cutting parameters, Tool life, Surface roughness

Abstract

This article attempts the optimization study of machining of SiCp/Al metal matrix composite (MMC) material to analyze the most suitable cutting parameters on tool life and surface quality. The research study integrated the effects of three machining parameters, cutting speed, feed rate, and depth of cut with carbide cutting tools. The optimization prediction model of machining parameters was established, and the influence of machining parameters on tool life and surface roughness and their interaction were studied. Through analysis, the key factors affecting tool life and surface roughness are determined. Combining the process parameters, advanced computation method was employed to predict responses and to compare it with the experimental data. The results show that, in this study, machining indexes such as tool life and surface roughness are mainly affected with increasing feed rate followed by the depth of cut. However, surface roughness reduces as the cutting speed increases slightly. Statistical methods have a level to a certain extent to determine its ability as a powerful method for analyzing SiCp/Al composite material processing.

References

Alaneme, K. K., Okotete, E. A., Fajemisin, A. V., & Bodunrin, M. O. (2019). Applicability of metallic reinforcements for mechanical performance enhancement in metal matrix composites: a review. In Arab Journal of Basic and Applied Sciences (Vol. 26, Issue 1, pp. 311–330). https://doi.org/10.1080/25765299.2019.1628689

Ali Laghari, R., Li, J., Laghari, A. A., Mia, M., Wang, S., Aibo, W., & K. K., P. (2019). Carbide tool life prediction and modeling in SiCp/Al turning process via artificial neural network approach. IOP Conference Series: Materials Science and Engineering, 600(1), 012022. https://doi.org/10.1088/1757-899X/600/1/012022

Astakhov, V. P. (2004). The assessment of cutting tool wear. International Journal of Machine Tools and Manufacture, 44(6), 637–647. https://doi.org/10.1016/j.ijmachtools.2003.11.006

Bansal, P., & Upadhyay, L. (2016). Effect of Turning Parameters on Tool Wear, Surface Roughness and Metal Removal Rate of Alumina Reinforced Aluminum Composite. Procedia Technology, 23, 304–310. https://doi.org/10.1016/j.protcy.2016.03.031

Chambers, A. R. (1996). The machinability of light alloy MMCs. Composites Part A: Applied Science and Manufacturing, 27(2), 143–147. https://doi.org/10.1016/1359-835X(95)00001-I

Chou, Y. K., & Liu, J. (2005). CVD diamond tool performance in metal matrix composite machining. Surface and Coatings Technology, 200(5–6), 1872–1878. https://doi.org/10.1016/j.surfcoat.2005.08.094

Dabade, U. A., Joshi, S. S., Balasubramaniam, R., & Bhanuprasad, V. V. (2007). Surface finish and integrity of machined surfaces on Al/SiCp composites. Journal of Materials Processing Technology, 192–193, 166–174. https://doi.org/10.1016/j.jmatprotec.2007.04.044

Davim, J. P. (2010). Machining composite materials. ISTE-Wiley, London. https://doi.org/TA418.9.C6M25 2009

Ding, X., Liew, W. Y. H., & Liu, X. D. (2005). Evaluation of machining performance of MMC with PCBN and PCD tools. Wear, 259(7–12), 1225–1234. https://doi.org/10.1016/j.wear.2005.02.094

El-Gallab, M., & Sklad, M. (1998). Machining of Al/SiC particulate metal-matrix composites Part I: Tool performance. Journal of Materials Processing Technology, 83(1–3), 151–158. https://doi.org/10.1016/S0924-0136(98)00054-5

Hakami, F., Pramanik, A., & Basak, A. K. (2017). Tool wear and surface quality of metal matrix composites due to machining: A review. In Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture (Vol. 231, Issue 5, pp. 739–752). https://doi.org/10.1177/0954405416667402

Huang, S., Guo, L., He, H., & Xu, L. (2018). Study on characteristics of SiCp / Al composites during high-speed milling with different particle size of PCD tools. The International Journal of Advanced Manufacturing Technology, 2269–2279. https://doi.org/10.1007/s00170-017-1350-6

Hung, N. P., Boey, F. Y. C., Khor, K. A., Phua, Y. S., & Lee, H. F. (1996). Machinability of aluminum alloys reinforced with silicon carbide particulates. Journal of Materials Processing Technology, 56(1–4), 966–977. https://doi.org/10.1016/0924-0136(95)01908-1

Hung, N. P., & Zhong, C. H. (1996). Cumulative tool wear in machining metal matrix composites. Part I: Modelling. Journal of Materials Processing Technology, 58(1), 109–113. https://doi.org/10.1016/0924-0136(95)02114-0

Indrawati, S., & Ridwansyah, M. (2015). Manufacturing Continuous Improvement Using Lean Six Sigma: An Iron Ores Industry Case Application. Procedia Manufacturing, 4, 528–534. https://doi.org/10.1016/j.promfg.2015.11.072

Joardar, H., Das, N. S., Sutradhar, G., & Singh, S. (2014). Application of response surface methodology for determining cutting force model in turning of LM6/SiCP metal matrix composite. Measurement: Journal of the International Measurement Confederation, 47(1). https://doi.org/10.1016/j.measurement.2013.09.023

Kannan, S., Kishawy, H. A., & Deiab, I. (2009). Cutting forces and TEM analysis of the generated surface during machining metal matrix composites. Journal of Materials Processing Technology, 209(5), 2260–2269. https://doi.org/10.1016/j.jmatprotec.2008.05.025

Kanta Das, D., Mishra, P. C., Singh, S., & Thakur, R. K. (2015). Tool wear in turning ceramic reinforced aluminum matrix composites—A review. Journal of Composite Materials, 49(24), 2949–2961. https://doi.org/10.1177/0021998314558955

Kishawy, H. A. (2012). Turning processes for metal matrix composites. In Machining Technology for Composite Materials (pp. 3–16). Elsevier. https://doi.org/10.1533/9780857095145.1.3

Kishawy, H. A., Kannan, S., & Parker, G. (2012). Traditional machining processes of MMC. In Machining of Metal Matrix Composites. https://doi.org/10.1007/978-0-85729-938-3_4

Laghari, R.A., Li, J., Xie, Z., & Wang, S.-Q. (2018). Modeling and Optimization of Tool Wear and Surface Roughness in Turning of Al/SiCp Using Response Surface Methodology. 3D Research, 9(4), 46. https://doi.org/10.1007/s13319-018-0199-2

Laghari, Rashid Ali, Li, J., Laghari, A. A., & Wang, S. (2019). A Review on Application of Soft Computing Techniques in Machining of Particle Reinforcement Metal Matrix Composites. Archives of Computational Methods in Engineering. https://doi.org/10.1007/s11831-019-09340-0

Laghari, Rashid Ali, Li, J., & Mia, M. (2020). Effects of Turning Parameters and Parametric Optimization of the Cutting Forces in Machining SiCp/Al 45 wt% Composite. Metals, 10(6), 840. https://doi.org/10.3390/met10060840

Li, H. Z., Zeng, H., & Chen, X. Q. (2006). An experimental study of tool wear and cutting force variation in the end milling of Inconel 718 with coated carbide inserts. Journal of Materials Processing Technology, 180(1–3), 296–304. https://doi.org/10.1016/j.jmatprotec.2006.07.009

Li, J., & Laghari, R. A. (2019). A review on machining and optimization of particle-reinforced metal matrix composites. International Journal of Advanced Manufacturing Technology, 100(9–12), 2929–2943. https://doi.org/10.1007/s00170-018-2837-5

Liu, Y., Huang, S., Zhou, L., & Xu, L. (2014). Three-dimensional finite element simulation analysis of cutting force of SiCp/Al composite thin-walled parts. Key Engineering Materials, 589–590. https://doi.org/10.4028/www.scientific.net/KEM.589-590.106

Manna, A., & Bhattacharayya, B. (2003). A study on machinability of Al/SiC-MMC. Journal of Materials Processing Technology, 140(1-3 SPEC.), 711–716. https://doi.org/10.1016/S0924-0136(03)00905-1

Manna, A., & Bhattacharyya, B. (2004). Investigation for optimal parametric combination for achieving better surface finish during turning of Al/SiC-MMC. The International Journal of Advanced Manufacturing Technology, 23(9–10), 658–665. https://doi.org/10.1007/s00170-003-1624-z

Manna, A., & Bhattacharyya, B. (2006). Taguchi and Gauss elimination method: A dual response approach for parametric optimization of CNC wire cut EDM of PRAlSiCMMC. International Journal of Advanced Manufacturing Technology, 28(1–2), 67–75. https://doi.org/10.1007/s00170-004-2331-0

Niu, Z., & Cheng, K. (2020). Improved dynamic cutting force modelling in micro milling of metal matrix composites Part I: Theoretical model and simulations. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 234(9), 1733–1745. https://doi.org/10.1177/0954406219899688

Paulo Davim, J. (2012). Machining of metal matrix composites. In Machining of Metal Matrix Composites. Springer London. https://doi.org/10.1007/978-0-85729-938-3

Paulo Davim, J., & Monteiro Baptista, A. (2000). Relationship between cutting force and PCD cutting tool wear in machining silicon carbide reinforced aluminum. Journal of Materials Processing Technology, 103(3), 417–423. https://doi.org/10.1016/S0924-0136(00)00495-7

PETKOVIC, D., & RADOVANOVIC, M. (2016). USING GENETIC ALGORITHMS FOR OPTIMIZATION OF TURNING MACHINING PROCESS. Journal of Engineering Studies and Research, 19(1). https://doi.org/10.29081/jesr.v19i1.139

Polini, R., Casadei, F., D’Antonio, P., & Traversa, E. (2003). Dry turning of alumina/aluminum composites with CVD diamond coated Co-cemented tungsten carbide tools. Surface and Coatings Technology, 166(2–3), 127–134. https://doi.org/10.1016/S0257-8972(02)00775-2

Pramanik, A., Zhang, L. C., & Arsecularatne, J. A. (2008). Machining of metal matrix composites: Effect of ceramic particles on residual stress, surface roughness and chip formation. International Journal of Machine Tools and Manufacture, 48(15), 1613–1625. https://doi.org/10.1016/j.ijmachtools.2008.07.008

Premnath, A. A., Alwarsamy, T., & Sugapriya, K. (2014). A comparative analysis of tool wear prediction using response surface methodology and artificial neural networks. Australian Journal of Mechanical Engineering, 12(1), 38–48. https://doi.org/10.7158/M12-075.2014.12.1

R. Arokiadass*, K. P. and N. A. D. (2012). Study on tool wear and surface roughness in end milling of particulate aluminum metal matrix composite: Application of response surface methodology. Journal of Computational & Applied Research in Mechanical Engineering (JCARME), 2(1), 1–13.

Sahoo, A. K., Pradhan, S., & Rout, A. K. (2013). Development and machinability assessment in turning Al/SiCp-metal matrix composite with multilayer coated carbide insert using Taguchi and statistical techniques. Archives of Civil and Mechanical Engineering, 13(1), 27–35. https://doi.org/10.1016/j.acme.2012.11.005

Sekhar, R., & Singh, T. P. (2015). Mechanisms in turning of metal matrix composites: A review. Journal of Materials Research and Technology, 4(2), 197–207. https://doi.org/10.1016/j.jmrt.2014.10.013

Singh, G., Gupta, M. K., Mia, M., & Sharma, V. S. (2018). Modeling and optimization of tool wear in MQL-assisted milling of Inconel 718 superalloy using evolutionary techniques. The International Journal of Advanced Manufacturing Technology, 97(1–4), 481–494. https://doi.org/10.1007/s00170-018-1911-3

Srinivas, J., Giri, R., & Yang, S. H. (2009). Optimization of multi-pass turning using particle swarm intelligence. International Journal of Advanced Manufacturing Technology, 40(1–2), 56–66. https://doi.org/10.1007/s00170-007-1320-5

Srivastava, A. K., Dixit, A. R., & Tiwari, S. (2018). A review on the intensification of metal matrix composites and its nonconventional machining. In IEEE Journal of Selected Topics in Quantum Electronics (Vol. 25, Issue 2, pp. 213–228). https://doi.org/10.1515/secm-2015-0287

Suresh, P., Marimuthu, K., Ranganathan, S., & Rajmohan, T. (2014). Optimization of machining parameters in turning of Al-SiC-Gr hybrid metal matrix composites using grey-fuzzy algorithm. Transactions of Nonferrous Metals Society of China (English Edition), 24(9), 2805–2814. https://doi.org/10.1016/S1003-6326(14)63412-9

Tamang, S.K. and Chandrasekaran, M. (2015). Modeling and optimization of parameters for minimizing surface roughness and tool wear in turning Al / SiCp MMC , using conventional and soft computing techniques Modeliranje in optimizacija obdelovalnih parametrov za minimizacijo površinske hrapavosti in. Advances in Production Engineering & Management, 10(2), 2–5.

Tansel, I. N., Arkan, T. T., Bao, W. Y., Mahendrakar, N., Shisler, B., Smith, D., & McCool, M. (2000). Tool wear estimation in micro-machining. Part I: Tool usage-cutting force relationship. International Journal of Machine Tools and Manufacture, 40(4), pp.599-608. https://doi.org/10.1016/S0890-6955(99)00073-5

Teti, R. (2002). Machining of composite materials. CIRP Annals - Manufacturing Technology, 51(2), 611–634. https://doi.org/10.1016/S0007-8506(07)61703-X

Tomac, N., Tannessen, K., & Rasch, F. O. (1992). Machinability of Particulate Aluminium Matrix Composites. CIRP Annals - Manufacturing Technology, 41(1), 55–58. https://doi.org/10.1016/S0007-8506(07)61151-2

Tonshoff, H. K., & Karpuschewski, B. (1999). Manufacturing of magnesium by turning and burnishing operations.

Tosun, G., & Muratoglu, M. (2004). The drilling of an Al/SiCpmetal-matrix composites. Part I: Microstructure. Composites Science and Technology, 64(2), 299–308. https://doi.org/10.1016/S0266-3538(03)00290-2

Wan, M., Li, S. E., Yuan, H., & Zhang, W. H. (2019). Cutting force modelling in machining of fiber-reinforced polymer matrix composites (PMCs): A review. In Composites Part A: Applied Science and Manufacturing (pp. 34–55). https://doi.org/10.1016/j.compositesa.2018.11.003

Wang, Y., Liao, W., Yang, K., Chen, W., & Liu, T. (2019). Investigation on cutting mechanism of SiC p /Al composites in precision turning. International Journal of Advanced Manufacturing Technology, 100(1–4), 963–972. https://doi.org/10.1007/s00170-018-2650-1

Xiang, J., Pang, S., Xie, L., Hu, X., Peng, S., & Wang, T. (2018). Investigation of cutting forces, surface integrity, and tool wear when high-speed milling of high-volume fraction SiCp/Al6063 composites in PCD tooling. International Journal of Advanced Manufacturing Technology, 98(5–8), 1237–1251. https://doi.org/10.1007/s00170-018-2294-1

Xu, L., & Paulo Davim, J. (2008). Modelling cutting power and tool wear in turning of aluminium matrix composites using artificial neural networks. International Journal of Materials and Product Technology, 32(2–3), 333–342. https://doi.org/10.1504/IJMPT.2008.018990

Yadav, R. N., Porwal, R. K., & Ramkumar, J. (2020). Experimental Modeling of EDMed Aluminum Metal Metrix Composite: A Review (p. pp.511-518). springer, singapore. https://doi.org/10.1007/978-981-32-9931-3_49

Yousefi, R., Kouchakzadeh, M. A., Rahiminasab, J., & Kadivar, M. A. (2011). The influence of SiC particles on tool wear in machining of Al/SiC metal matrix composites produced by powder extrusion. Advanced Materials Research, 325, 393–399. https://doi.org/10.4028/www.scientific.net/AMR.325.393

Zhou, L., Huang, S. T., Wang, D., & Yu, X. L. (2011). Finite element and experimental studies of the cutting process of SiCp/Al composites with PCD tools. International Journal of Advanced Manufacturing Technology, 52(5–8), 619–626. https://doi.org/10.1007/s00170-010-2776-2

Published

2020-10-29

How to Cite

Laghari, R. A. ., Gupta, M. K. ., & Li, J. . (2020). Evolutionary algorithm for the prediction and optimization of SiCp/Al metal matrix composite machining. Journal of Production Systems and Manufacturing Science, 2(1), 59-69. Retrieved from http://imperialopen.com/index.php/JPSMS/article/view/46

Issue

Section

Original Research Articles