Mechanoluminescence for structural health monitoring


  • Md Abu S. Shohag Department of Engineering Technology, University of North Alabama, Alabama, United States


Mechanoluminescence, Structural health monitoring, Perovskite, Sensors


Mechanoluminescence (ML) is a promising energy-conversion phenomenon for mechanically driven photon sources. Recent research in ML has shown the potential of utilization of the ML materials for fabricating sensors and other devices such as artificial skin, colorful displays, and energy harvesting devices. ML materials can also be used for load sensing in dynamic structures, dynamic pressure mapping, and structural health monitoring by embedding them in composites. Direct conversion of mechanical stimuli (applied load, pressure, impact, etc.) into the light of specific wavelength provides a new direction for designing novel sensing systems. A photo collector device is required to capture the ML light and transforms it into an electrical signal. This article gives an overview of the potential application of ML materials in structural health monitoring.


Chen, X.-F., Duan, C.-Y., Zhu, X.-H., You, X.-Z., Shanmuga Sundara Raj, S., Fun, H.-K., & Wu, J. (2001). Triboluminescence and crystal structures of europium(III) complexes. Materials Chemistry and Physics, 72(1), 11-15. doi:
Cotton, F. A., & Huang, P. (2003). Further observations on the non-rigorous relationship between triboluminescence and crystal centricity. Inorganica Chimica Acta, 346, 223-226. doi:
Dickens, T. J. (2007). Assessment of triboluminescent materials for in-situ health monitoring. (Master of Science), Florida State University.
Dickens, T. J., & Okoli, O. I. (2011). Enabling damage detection: Manufacturing composite laminates doped with dispersed triboluminescent materials. Journal of Reinforced Plastics and Composites, 30(22), 1869-1876. doi: 10.1177/0731684411413490
Hollerman, W. A., Goedeke, S. M., Bergeron, N. P., Muntele, C. I., Allison, S. W., & Ila, D. (2005). Effects of proton irradiation on triboluminescent materials such as ZnS:Mn. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 241(1–4), 578-582. doi:
Massa, W. (2013). Crystal structure determination: Springer Science & Business Media.
Olawale, D. O., Sullivan, G., Dickens, T., Tsalickis, S., Okoli, O. I., Sobanjo, J. O., & Wang, B. (2012). Development of a triboluminescence-based sensor system for concrete structures. Structural Health Monitoring, 11(2), 139-147. doi: 10.1177/1475921711414231
Shohag, M. A. S., Dessureault, Y.-S., Joshi, K., Ndebele, T., Olawale, D., Dickens, T., & Okoli, O. (2018). Enhanced fabrication process for in situ triboluminescent optical fiber sensor for multifunctional composites. Measurement, 121, 240-248. doi:
Shohag, M. A. S., Eze, V. O., Braga Carani, L., & Okoli, O. I. (2020). Fully Integrated Mechanoluminescent Devices with Nanometer-Thick Perovskite Film as Self-Powered Flexible Sensor for Dynamic Pressure Sensing. ACS Applied Nano Materials, 3(7), 6749-6756. doi: 10.1021/acsanm.0c01168
Shohag, M. A. S., Ndebele, T., & Okoli, O. (2018). Real-time damage monitoring in trailing edge bondlines of wind turbine blades with triboluminescent sensors. Structural Health Monitoring, 18(4), 1129–1140. doi: 10.1177/1475921718788861
Shohag, M. A. S., Ndebele, T., Olawale, D. O., & Okoli, O. I. (2017). Advances of bio-inspired in-situ triboluminescent optical fiber sensor for damage and load monitoring in multifunctional composite. Paper presented at the Proceedings of the 11th International Workshop on Structural Health Monitoring 2017, Stanford University, Stanford, CA 94305.
Walton, A. J. (1977). Triboluminesence. Adv Phys, 26(6), 887-948.
Zink, J. I., Beese, W., Schindler, J. W., & Smiel, A. J. (1982). Triboluminescence of silica core optical fibers. Applied Physics Letters, 40(2), 110-112. doi: doi:


2020-10-08 — Updated on 2020-10-27


How to Cite

Shohag, M. A. S. . (2020). Mechanoluminescence for structural health monitoring. Journal of Production Systems and Manufacturing Science, 2(1), 1-3. Retrieved from (Original work published October 8, 2020)